Many Activities, One Structure: Functional Plasticity of Ribozyme Folds.

نویسندگان

  • Matthew W L Lau
  • Adrian R Ferré-D'Amaré
چکیده

Catalytic RNAs, or ribozymes, are involved in a number of essential biological processes, such as replication of RNA genomes and mobile genetic elements, RNA splicing, translation, and RNA degradation. The function of ribozymes requires the formation of active sites decorated with RNA functional groups within defined three-dimensional (3D) structures. The genotype (sequence) of RNAs ultimately determines what 3D structures they adopt (as a function of their environmental conditions). These 3D structures, in turn, give rise to biochemical activity, which can further elaborate them by catalytic rearrangements or association with other molecules. The fitness landscape of a non-periodic linear polymer, such as RNA, relates its primary structure to a phenotype. Two major challenges in the analysis of ribozymes is to map all possible genotypes to their corresponding catalytic activity (that is, to determine their fitness landscape experimentally), and to understand whether their genotypes and three-dimensional structures can support multiple different catalytic functions. Recently, the combined results of experiments that employ in vitro evolution methods, high-throughput sequencing and crystallographic structure determination have hinted at answers to these two questions: while the fitness landscape of ribozymes is rugged, meaning that their catalytic activity cannot be optimized by a smooth trajectory in sequence space, once an RNA achieves a stable three-dimensional fold, it can be endowed with distinctly different biochemical activities through small changes in genotype. This functional plasticity of highly structured RNAs may be particularly advantageous for the adaptation of organisms to drastic changes in selective pressure, or for the development of new biotechnological tools.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One sequence, two ribozymes: implications for the emergence of new ribozyme folds.

We describe a single RNA sequence that can assume either of two ribozyme folds and catalyze the two respective reactions. The two ribozyme folds share no evolutionary history and are completely different, with no base pairs (and probably no hydrogen bonds) in common. Minor variants of this sequence are highly active for one or the other reaction, and can be accessed from prototype ribozymes thr...

متن کامل

The shape-shifting quasispecies of RNA: one sequence, many functional folds.

E Unus pluribum, or "Of One, Many", may be at the root of decoding the RNA sequence-structure-function relationship. RNAs embody the large majority of genes in higher eukaryotes and fold in a sequence-directed fashion into three-dimensional structures that perform functions conserved across all cellular life forms, ranging from regulating to executing gene expression. While it is the most impor...

متن کامل

Photocrosslinking detects a compact, active structure of the hammerhead ribozyme.

The hammerhead ribozyme has been intensively studied for approximately 15 years, but its cleavage mechanism is not yet understood. Crystal structures reveal a Y-shaped molecule in which the cleavage site is not ideally aligned for an S(N)2 reaction and no RNA functional groups are positioned appropriately to perform the roles of acid and base or other functions in the catalysis. If the ribozyme...

متن کامل

Mechanism for allosteric inhibition of an ATP-sensitive ribozyme.

We report the structural basis for the modulation of an ATP-sensitive ribozyme that was engineered by modular rational design. This allosteric ribozyme is composed of two independently functioning domains, one a receptor for ATP and the other a self-cleaving ribozyme. When fused in the appropriate fashion, the conjoined aptamer-ribozyme construct functions as an allosteric ribozyme that is inhi...

متن کامل

Thermodynamics and kinetics of the hairpin ribozyme from atomistic folding/unfolding simulations.

We report a set of atomistic folding/unfolding simulations for the hairpin ribozyme using a Monte Carlo algorithm. The hairpin ribozyme folds in solution and catalyzes self-cleavage or ligation via a specific two-domain structure. The minimal active ribozyme has been studied extensively, showing stabilization of the active structure by cations and dynamic motion of the active structure. Here, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecules

دوره 21 11  شماره 

صفحات  -

تاریخ انتشار 2016